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As the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) betacoronavirus (β-CoV) pandemic continues, 
the deployment of safe and effective vaccines presents a key 
intervention for mitigating disease severity and spread and 
eventually relaxing non-pharmaceutical interventions (NPIs). 
At the time of writing, eleven vaccines have been approved 
by at least one country (1). We focus mainly on the vaccines 
from Pfizer/BioNTech, Moderna, and Oxford/AstraZeneca. 
The first two elicit adaptive immunity against SARS-CoV-2 in 
response to the introduction of messenger ribonucleic acid 
(mRNA) molecules that encode the spike protein of SARS-
CoV-2 (2), and appear to offer greater than 95% (Pfizer/BioN-
Tech (3), approved in 60 countries) and 94% (Moderna (2), 
approved in 38 countries) protection against symptomatic 
coronavirus disease 2019 (COVID-19). Both of these mRNA 
vaccines were tested in clinical trials according to a two-dose 
regime with dose spacing of 21 and 28 days for the Pfizer/Bi-
oNTech and Moderna platforms, respectively. The Ox-
ford/AstraZeneca vaccine uses a non-replicating adenovirus 
vector, and has also been tested in clinical trials according to 
a two-dose regime with a target 28-day inter-dose period  
 

(although for logistical reasons some trial participants re-
ceived their second dose after a delay of at least 12 weeks). 
Clinical trials indicated 62%–90% efficacy for this vaccine ac-
cording to the specific dose administered (4). While we base 
our parameter choices and modeling assumptions on these 
three vaccines, our results are generalizable across platforms. 

As these vaccines have been distributed internationally, 
several countries including the UK (5) and Canada (6) have 
chosen to delay the second dose in an effort to increase the 
number of individuals receiving at least one or in response to 
logistical constraints (7). Although a number of participants 
dropped out after a single dose of the vaccine in the Pfizer/Bi-
oNTech and Moderna trials, these studies were not designed 
to assess vaccine efficacy under such circumstances, and 
Pfizer has stated that there is no evidence that vaccine pro-
tection from a single dose extends beyond 21 days (5), alt-
hough other data paint a more optimistic picture (8, 9). The 
Oxford/AstraZeneca clinical trials did include different dose 
spacings, and limited evidence suggests that longer intervals 
(two to three months) did not affect and may even have im-
proved vaccine efficacy (4, 5). Ultimately, the consequences 
of deviating from manufacturer-prescribed dosing regimes at 
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In the face of vaccine dose shortages and logistical challenges, various deployment strategies are being 
proposed to increase population immunity levels to SARS-CoV-2. Two critical issues arise: how will the 
timing of delivery of the second dose affect both infection dynamics and prospects for the evolution of viral 
immune escape via a build-up of partially immune individuals. Both hinge on the robustness of the immune 
response elicited by a single dose, compared to natural and two-dose immunity. Building on an existing 
immuno-epidemiological model, we find that in the short-term, focusing on one dose generally decreases 
infections, but longer-term outcomes depend on this relative immune robustness. We then explore three 
scenarios of selection and find that a one-dose policy may increase the potential for antigenic evolution 
under certain conditions of partial population immunity. We highlight the critical need to test viral loads 
and quantify immune responses after one vaccine dose, and to ramp up vaccination efforts throughout the 
world. 
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the population scale remain unknown, but will hinge on im-
mune responses. 

While there has been significant progress in quantifying 
host immune responses following infection (10–12), substan-
tial uncertainty regarding the strength and duration of both 
natural and vaccinal SARS-CoV-2 immunity remains. Previ-
ous work suggests that these factors will play a central role 
in shaping the future dynamics of COVID-19 cases (13). Fu-
ture cases also create an environment for the selection of 
novel variants [e.g., (14–16)]. Of particular concern is the pos-
sibility of antigenic drift [e.g., for influenza (17), and (18) for 
the seasonal human coronavirus 229E] via immune escape 
from natural or vaccinal immunity. For example, immune es-
cape might be especially important if vaccinal immunity elic-
ited after the complete two-dose regime is highly protective 
whereas a single vaccine dose provides less effective immun-
ity. Consequently, the longer term epidemiological and evo-
lutionary implications of these different SARS-CoV-2 vaccine 
dosing regimes are not yet clear; the immediate need for ef-
fective mass vaccination makes understanding them critical 
to inform policy (19). 

Here, we explore these epidemiological and evolutionary 
considerations with an extension of a recent immuno-epide-
miological model for SARS-CoV-2 dynamics (13), depicted 
schematically in Fig. 1. Without vaccination, our model re-
duces to the Susceptible-Infected-Recovered-(Susceptible) 
[SIR(S)] model (13, 20), where individual immunity after re-
covery from primary infection may eventually wane at rate δ, 
leading to potentially reduced susceptibility to secondary in-
fections, denoted by the fraction ϵ relative to a baseline level 
of unity. This parameter ϵ is thus related to the (transmission-
blocking) strength of immunity, and titrates between the SIR 
(lifetime immunity, ϵ = 0) and SIRS (hosts regain complete 
susceptibility, ϵ = 1) paradigms. Quantifying ϵ is challenging 
because it requires measuring reinfection rates after the wan-
ing of immunity. Some studies have made significant pro-
gress in this direction (11, 12); however, uncertainties remain, 
particularly related to quantifying the average duration of 
immunity 1/δ. In this model extension (Fig. 1 and Materials 
and methods) we incorporate two vaccinated classes; V1 ac-
counts for individuals who have received one dose of a SARS-
CoV-2 vaccine and V2 tracks individuals who have received 
two doses. In the short term, we assume that both dosing op-

tions decrease susceptibility by fractions ( )1
1 V−   (one dose) 

and ( )2
1 V−   (two doses), inferred from the clinical trial data 

(though the nature of the infecting variant may influence 
this); we also assume that IV tracks infection following vac-
cination. We allow for vaccinal immunity to wane at separate 
rates [ρ1 (one dose) and ρ2 (two doses)], moving individuals 
to the partially susceptible immune classes 

1SS  and 
2SS  

characterized by (possibly different) levels of immune protec-
tion ϵ1 and ϵ2. Infection following waned one-dose or two-dose 
vaccinal immunity is tracked by the immune classes 

1SI  and  

2SI , respectively. We consider a continuous spectrum for the 

inter-dose period 
1
ω

 
 
 

, with an infinite value corresponding 

to a “one-dose strategy”, and model the rate of administration 
of the first dose ν as an increasing function of the inter-dose 
period (Fig. 1 and Materials and methods) to reflect the in-
crease in available doses due to a delayed second dose. Thus, 
dosing regimes with longer inter-dose periods allow for 
higher coverage with the first dose. 

We begin by projecting the epidemiological impacts of the 
different dosing regimes on medium-term temporal dynam-
ics of COVID-19 cases. We then examine the potential evolu-
tionary consequences of dosing regime by calculating a time-
dependent relative net viral adaptation rate (17). This term is 
related to the strength of natural and vaccinal immunity (ei-
ther via inducing selection through immune pressure or sup-
pressing viral replication) as well as the sizes of classes of 
individuals experiencing infections after immune waning. 
 
Epidemiological impacts 
As a base case, we consider a high latitude European or North 
American city with initial conditions that qualitatively corre-
spond to early 2021 (see supplementary materials and figs. S5 
and S6 for other scenarios, e.g., a high initial attack rate or 
almost full susceptibility), in addition to a seasonal transmis-
sion rate (21) with NPIs (see Materials and methods). Note 
that given immunological and future control uncertainties, 
we are aiming to project qualitatively rather than formulate 
quantitative predictions for particular locations. The UK and 
Canadian policy is for a delayed second dose; they are not 
aiming for an “exclusively” one-dose policy. However, we ex-
plore the one-dose strategy as an extreme case for the “two-
dose” vaccines; it also encompasses a pessimistic situation of 
waning public confidence in vaccination and individuals’ 
own decisions to forgo the second dose. Finally, this one-dose 
policy could capture vaccines which only require a single 
dose, e.g., the Johnson & Johnson vaccine. 

In Fig. 2, we present potential scenarios for medium-term 
SARS-CoV-2 infection and immunity dynamics contingent 
upon vaccine dosing regimes. We start by assuming that vac-
cination occurs at a constant rate, and assume a relatively 
optimistic maximum rate of administration of the first dose 
of ν0 = 2% of the population per week (see supplementary 
materials for other scenarios). Figure 2A and Fig. 2B corre-
spond, respectively, to scenarios with weaker (and shorter) 
and stronger (and longer) natural and vaccinal adaptive im-
mune responses. Thus, the former represents a scenario with 
higher secondary susceptible density than the latter. In each 
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panel, the top and bottom sections consider poor and robust 
one-dose vaccinal immunity, respectively. The leftmost col-
umn represents a one-dose vaccine policy (captured in the 
model by infinite dose spacing), with dose spacing decreasing 
to 4 weeks in the rightmost column (i.e., a strict two-dose pol-
icy with doses separated by the clinical trial window corre-
sponding to Moderna’s recommendations for their vaccine, 
hereafter referred to as the “recommended two-dose strat-
egy”). 

As expected, we find that broader deployment of widely-
spaced doses is beneficial. Specifically, a one-dose strategy (or 
a longer inter-dose period) may lead to a substantially re-
duced “first” epidemic peak of cases after the initiation of vac-
cination (compare the leftmost top panels of Fig. 2, A and B, 
with the no vaccination scenarios in fig. S1, A and B). This 
result applies even if immunity conferred by one vaccine dose 
is shorter and weaker than that following two-doses (top pan-
els of Fig. 2, A and B). However under these conditions of 
imperfect immunity, an exclusively one-dose strategy then 
leads to an earlier subsequent peak due to the accumulation 
of partially susceptible individuals. When the rate of admin-
istration of the first dose is very high (fig. S4, ν0 = 5% per 
week), this subsequent infection peak may be larger than that 
expected in the scenario with no vaccination. In general, the 
accumulation of partially susceptible individuals with waned 
one-dose vaccinal immunity can be mitigated by implement-
ing a two-dose strategy and decreasing the time between 
doses. Thus, in situations of a less effective first dose where 
the second dose is delayed, it is important to ensure individ-
uals eventually do obtain their second dose. 

In line with intuition, longer and stronger immunity elic-
ited after a single dose heightens the benefits of a one-dose 
strategy or of delaying the second dose (compare the top and 
bottom leftmost panels of Fig. 2, A and B). Additionally, the 
protective effects of adopting these strategies instead of the 
two-dose regime are maintained in the medium-term, with 
decreased burden in all future peaks. This is further summa-
rized in Fig. 3A via the cumulative number of total and severe 
cases (right and left panels, respectively) over approximately 
four years from the time of vaccine initiation, normalized by 
the burdens with no vaccination; these ratios are plotted as a 
function of the inter-dose period and the one- to two-dose 
immune response ratio xe (see figure caption for details). 
When the immune response conferred by a single dose is 
close to the robustness following two doses, total case num-
bers (Fig. 3A, right panel) can be substantially reduced by de-
laying the second dose. However, for smaller values of xe, 
larger inter-dose periods are associated with more cases. The 
reduction in the cumulative burden of severe cases is even 
more sizeable (Fig. 3A, left panel) due to the assumed reduc-
tion in the fraction of severe cases for partially immune indi-
viduals. When vaccination rates are substantially lower (fig. 

S2, ν0 = 0.1% per week; and fig. S3, ν0 = 1% per week), the 
benefits of a single dose strategy diminish even for an effec-
tive first dose, as an insufficient proportion of the population 
are immunized. The short term effect of the vaccine on case 
numbers is sensitive to when it is introduced in the dynam-
ical cycle (figs. S7 and S8), highlighting the critical interplay 
between the force of infection and the level of population im-
munity (see supplementary materials for further details). 

Vaccines will be central to efforts to attain community im-
munity (22), and thus prevent local spread due to case impor-
tation. We therefore analytically calculated the first vaccine 
dose administration rate for a given inter-dose spacing re-
quired for community immunity in our model (see supple-
mentary materials). In the long term, however, individuals 
whose one- or two-dose immunity has waned will likely be 
able to be vaccinated again before infection in countries with 
adequate supplies; we therefore incorporated re-vaccination 
of these individuals into the extended model and computed 
an analogous minimal vaccination rate which we plot in Fig. 
3B. We find that as the inter-dose period grows, this minimal 
rate depends increasingly on the degree of reduction in sus-
ceptibility after the waning of one-dose vaccinal immunity ϵ1 
(Fig. 3B and see fig. S13 for other parameter choices). Vaccine 
refusal (23) may also impact the attainment of community 
immunity through vaccinal immunity in the longer-term (see 
supplementary materials). 
 
Evolutionary impacts 
The recent emergence of numerous SARS-CoV-2 variants in 
still relatively susceptible populations underline the virus’s 
evolutionary potential (24–26). We focus here on the longer 
term potential for immune escape from natural or vaccinal 
immunity (17). For immune escape variants to spread within 
a population, they must first arise via mutation, and then 
there must be substantial selection pressure in their favor. 
We expect the greatest opportunity for variants to arise in 
(and spread from) hosts with the highest viral loads, likely 
those with the least immunity. On the other hand, we expect 
the greatest selection for escape where immunity is strongest. 
Previous research on the phylodynamic interaction between 
viral epidemiology and evolution (based on seasonal influ-
enza) predicts that partially immune individuals (permitting 
intermediate levels of selection and transmission) could max-
imize levels of escape (17) (Fig. 4A). Under this model, we 
would project that different categories of secondarily infected 
people (after waning of natural immunity or immunity con-
ferred from one or two doses of vaccine) would be key poten-
tial contributors to viral immune escape. 

In Fig. 4, we consider three potential evolutionary scenar-
ios, exploring different assumptions regarding viral abun-
dance and within-host selection for the various immune 
classes. In all scenarios, we assume for simplicity that 
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immunity elicited after two doses of the vaccine is equivalent 
to that elicited after natural infection. We also assume that 
transmission rises with viral abundance in hosts (17). In Sce-
nario I (black borders on circles, top panel of Fig. 4A), we 
assume that infections of all classes of partially susceptible 
individuals lead to strong selective pressures and low viral 
abundance (a marker of low transmission), and thus low 
rates of adaptation, with only slightly reduced immune pres-
sure for infections after a waned single vaccine dose relative 
to natural infection or two doses. Scenario II (blue borders 
on circles, middle panel of Fig. 4A), considers a situation 
where natural and two-dose vaccinal immunity again lead to 
low viral abundance, but one-dose vaccinal immunity is asso-
ciated with intermediate immune pressure that results in 
substantially higher rates of viral adaptation. Finally, in Sce-
nario III (purple borders on circles, bottom panel of Fig. 4A), 
adaptive immune responses following waned natural, one 
dose, and two dose vaccinal immunity all lead to similar in-
termediate levels of immune pressure and high rates of viral 
adaptation. In all cases, we assume for tractability that viral 
immune escape is not correlated with clinical severity (27). 

The relative potential viral adaptation rates [see (17) for 
more details] corresponding to each scenario are presented 
in the top rows of Fig. 4, B and C. This relative rate is esti-
mated as the sum of the sizes of the infection classes follow-
ing waned immunity (i.e., IS after SS, 

1SI  after 
1SS , and 

2SI  

after 
2SS ) weighted by the infection class-specific net viral 

adaptation rate assigned in each scenario. Therefore, this 
quantity reflects a weight-averaged potential rate for viral ad-
aptation per-individual per-infection. The corresponding im-
mune and susceptibility classes are plotted in the middle and 
bottom rows, respectively, according to the color scheme de-
fined in Fig. 1A. The weaker immunity scenario of Fig. 2A is 
considered, with Fig. 4B and Fig. 4C corresponding, respec-
tively, to the situations of a weaker and more robust single 
vaccine dose relative to two doses. The leftmost column cor-
responds to a one dose strategy, an inter-dose period of 

1 24
ω
=  weeks is assumed in the middle column, and the 

rightmost column assumes a two dose strategy with doses 

separated by the clinical trial window of 
1 4
ω
=  weeks. 

Different assumptions regarding the strength and dura-
tion of adaptive immune responses to vaccines and natural 
infections alter projections for the proportions of individuals 
in the partially susceptible immune classes over time. When 
one dose vaccinal immunity is poor, a one-dose strategy re-
sults in the rapid accumulation of partially susceptible 

1SS  

individuals (Fig. 4B, bottom row) and a greater infection bur-
den. (Note, this 

1SS  immune class is highlighted in orange for 

visibility in Figs. 1, 2, and 4.) When the assumed individual 
rates of evolutionary adaptation arising from these infection 
classes are high (Scenarios II and III), we find that a one-dose 
strategy could lead to substantially higher relative rates of 
adaptation. This effect can be mitigated by implementing a 
two-dose strategy even with a longer inter-dose period than 
the recommended duration, echoing our epidemiological 
findings. 

A single dose strategy of a strongly immunizing vaccine 
reduces infection rates, resulting in lower relative rates of ad-
aptation when a one dose strategy is used; however the re-
sulting large fraction of 

1SS  individuals may still lead to 

evolutionary pressure, particularly when the potential viral 
adaptation rate associated with 

1SI  infections is large. A two-

dose strategy mitigates this effect, but the corresponding re-
duction in vaccinated individuals increases the infection bur-
den from other classes. Thus, to avoid these potentially 
pessimistic evolutionary outcomes, our results highlight the 
importance of rapid vaccine deployment. More broadly, our 
results further underline the importance of equitable, global 
vaccination (28, 29): immune escape anywhere will quickly 
spread. 
 
Impact of increasing vaccination through time 
In the supplementary materials (figs. S10 to S12), we explore 
the implications of ramping up vaccine deployment through 
two approaches. First, we examine a simple increase in the 
rate of administration of the first dose and unchanged dosing 
regimes (fig. S10). Qualitatively, these results are largely anal-
ogous to our previous results, and reflect the benefits of in-
creasing population immunity through an increase in 
vaccination deployment. 

However, as vaccines become more widely available, poli-
cies on dosing regimes may change. The second approach we 
consider is a timely shift to a two-dose policy with recom-
mended inter-dose spacing as vaccine deployment capacity 
increases (figs. S11 and S12). Initially delaying (or omitting) 
the second dose decreases the first epidemic peak after the 
initiation of vaccination. Such a reduction in first peak size 
would also reduce secondary infections, and thus potentially 
immune escape in most cases (i.e., an evolutionary ad-
vantage). Subsequently, the switch to a manufacturer-timed 
vaccine dosage regime mitigates the potential medium-term 
disadvantages of delaying (or omitting) the second dose that 
may arise if immunity conferred from a single dose is rela-
tively poor, including the accumulation of partially suscepti-
ble 

1SS  individuals whose one-dose vaccinal immunity has 

waned. These contrasts highlight the importance of data-
driven policies that undergo constant re-evaluation as vac-
cination progresses. 
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Caveats 
Our immuno-epidemiological model makes several assump-
tions. While heterogeneities (superspreading, age, space, etc.) 
(30–33) are important for the quantitative prediction of 
SARS-CoV-2 dynamics, we previously found that these do not 
qualitatively affect our results (13). Nevertheless, we again 
briefly explore the epidemiological consequences of hetero-
geneities in transmission and vaccine coverage in the supple-
mentary materials. We have also assumed that the robustness 
of immune responses following the second dose is independ-
ent of the inter-dose period, yet it is possible that delaying 
the second dose may actually enhance adaptive immune re-
sponses (34). Detailed clinical evaluation of adaptive immune 
responses after one and two vaccine doses with different in-
ter-dose spacing is an important direction for future work. 

Additionally, we have assumed highly simplified scenarios 
for NPIs. The chosen scenario was selected to qualitatively 
capture current estimates of SARS-CoV-2 prevalence and se-
ropositivity in large cities. However, these values vary sub-
stantially between locations, a notable example being recent 
estimates of a large infection rate in Manaus, Brazil, during 
the first wave (35), or countries having almost no infections 
due to the successful implementation of NPIs (36–38). We 
have examined these scenarios in the supplementary materi-
als (figs. S5 and S6). The qualitative projections of our model 
are sensitive to the composition of infection and immune 
classes at the onset of vaccination (including, therefore, the 
assumption of dramatically higher seropositivity levels, i.e., 
the sum of the SS and R classes). We further explore this in 
the supplementary materials through the initiation of vac-
cination at different times in the dynamic cycle (figs. S7 and 
S8). Thorough explorations of various NPIs, seasonal trans-
mission rate patterns, vaccine deployment rates, dosing re-
gimes, and clinical burdens can be investigated for broad 
ranges of epidemiological and immunological parameters 
with the online interactive application, available at (39). 

Finally, we have explored the simplest evolutionary 
model, which can only give a general indication of the poten-
tial for evolution under different scenarios. Including more 
complex evolutionary models (40, 41) into our framework is 
thus another important area for future work. Population het-
erogeneities likely have complex impacts on viral evolution. 
First, heterogeneities in immune responses and transmission 
(e.g., chronically infected hosts that shed virus for extended 
periods (42), or focused versus polyclonal responses) may 
have important impacts on the accumulation of genetic di-
versity and the strength of selection pressures, and hence on 
evolutionary potential [e.g., for influenza, see (43)]. Second, 
there are complex evolutionary implications of disease sever-
ity minimization by vaccination (27, 44). Third, superspread-
ing and contact structure could influence the rate of spread 
of novel variants through a population (45). Additionally, 

increases in viral avidity to the human ACE2 receptor might 
generate multiple benefits for the virus in terms of enhanced 
transmission and immune escape (46). Finally, genetic pro-
cesses such as clonal interference, epistasis, and recombina-
tion also add substantial complexity to evolutionary 
dynamics [e.g., (17, 47, 48)]. Further model refinements 
should also include these details for increased accuracy. A full 
list of caveats is presented in the supplementary materials. 
 
Conclusion 
The deployment of SARS-CoV-2 vaccines in the coming 
months will strongly shape post-pandemic epidemiological 
trajectories and characteristics of accumulated population 
immunity. Dosing regimes should seek to navigate existing 
immunological and epidemiological trade-offs between indi-
viduals and populations. Using simple models, we have 
shown that different regimes may have crucial epidemiologi-
cal and evolutionary impacts, resulting in a wide range of po-
tential outcomes in the medium term. Our work also lays the 
foundation for a number of future considerations related to 
vaccine deployment during ongoing epidemics, especially 
preparing against future pandemics. 

In line with intuition, spreading single doses in emer-
gency settings (i.e., rising infections) is beneficial in the short 
term and reduces prevalence. Furthermore, we find that if 
immunity following a single dose is robust, then delaying the 
second dose is also optimal from an epidemiological perspec-
tive in the longer term. On the other hand, if one-dose vacci-
nal immunity is weak, the outcome could be more 
pessimistic; specifically, a vaccine strategy with a very long 
inter-dose period could lead to marginal short-term benefits 
(a decrease in the short-term burden) at the cost of a higher 
infection burden in the long term and substantially more po-
tential for viral evolution. These negative longer term effects 
may be alleviated by the eventual administration of a second 
dose, even if it is moderately delayed. With additional 
knowledge of the relative strength and duration of one-dose 
vaccinal immunity and corresponding, clinically-informed 
policies related to dosing regimes, pessimistic scenarios may 
be avoided. For context, at the time of writing, the UK for 
example has been particularly successful in rolling out vac-
cination to a large population with a wide spacing between 
doses (49). Our model illustrates that, ultimately, the long 
term impacts of this strategy, especially in terms of transmis-
sion and immune escape, will depend on the duration and 
strength of one-dose vaccinal immunity. Recent experience of 
weaker vaccinal immunity against the B.1.351 strain (50) un-
derlines the importance of both detecting novel strains and 
titrating the strength of natural and vaccinal immunity 
against them. 

In places where vaccine deployment is delayed and vac-
cination rates are low, our results stress the subsequent 
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negative epidemiological and evolutionary impacts that may 
emerge. Particularly since these consequences (e.g., the evo-
lution of new variants) could emerge as global problems, this 
underlines the urgent need for global equity in vaccine distri-
bution and deployment (28, 29). 

Current uncertainties surrounding the strength and dura-
tion of adaptive immunity in response to natural infection or 
vaccination lead to very broad ranges for the possible out-
comes of various dosing regimes. Nevertheless, ongoing ele-
vated COVID-19 case numbers stresses the rapid need for 
effective, mass vaccine deployment. Overall, our work empha-
sizes that the impact of vaccine dosing regimes are strongly 
dependent on the relative robustness of immunity conferred 
by a single dose. It is therefore imperative to determine the 
strength and duration of clinical protection and transmis-
sion-blocking immunity through careful clinical evaluations 
(including, for instance, randomized control trials of dose in-
tervals and regular testing of viral loads in vaccinated indi-
viduals, their contacts, and those who have recovered from 
natural infections) in order to enforce sound public policies. 
More broadly, our results underscore the importance of ex-
ploring the phylodynamic interaction of pathogen dynamics 
and evolution, from within host to global scales, for SARS-
CoV-2, influenza, and other important pathogens (40, 41, 47, 
48, 51, 52). 
 
Materials and methods 
 
Model formulation 
We extend the model of (13) to examine different vaccination 
strategies. The additional compartments are as follows: Vi de-
notes individuals vaccinated with i doses and are thus im-
mune; 

iSS  denotes individuals whose complete i-dose 

immunity has waned and are now partially susceptible again; 

iSI  denotes individuals who were in 
iSS  and have now been 

infected again; IV denotes individuals for whom the vaccine 
did not prevent infection. 

The extended model contains several new parameters: 
1
ρi

 

is the average duration of vaccinal immunity Vi; 
1
ω

 is the av-

erage inter-dose period; 
iV  is the decrease in susceptibility 

following vaccination with dose i; ϵi is the decrease in suscep-
tibility following waning of i-dose immunity; αi is the relative 
infectiousness of individuals in 

iSI ; and αV is the relative in-

fectiousness of individuals in IV. To allow for heterogeneity in 
vaccinal immune responses and potentially cumulative ef-
fects of natural and vaccinal immunity, we take c to be the 
fraction of previously-infected partially susceptible individu-
als (SS) for whom one dose of the vaccine gives equivalent 

immunity to two-doses for fully susceptible individuals (SP). 
Finally, xi is the fraction of individuals in 

iSS  that are re-vac-

cinated, and (1-pi) is the fraction of individuals in 
iSS  for 

whom re-administration of the “first dose” provides equiva-
lent immune protection to two doses (i.e., they transition to 
the V2 class). The full set of equations governing the transi-
tions between these infection and immunity classes is then 
given by 

( )
1 21 2 vax μ  β α α α α ν μP

P P S V V S S P
dS S I I I I I S S
dt

 = − + + + + − +   

  (1a) 

 ( )
1 21 2 β α α α α γ μP

P P S V V S S P
dI S I I I I I I
dt

 = + + + + − +    (1b) 

 

 ( ) ( )
1 2

 γ δ μP s V S S
dR I I I I I R
dt

= + + + + − +   (1c) 

 

( )
1 21 2 vax δ   β α α α α ν μS

S P S V V S S S
dS

R S I I I I I S S
dt

 = − + + + + − +   

  (1d) 

 ( )
1 21 2  β α α α α γ μS

S P S V V S S S
dI

S I I I I I I
dt

 = + + + + − +    (1e) 

 

 

( )
1 2

1 1 2

1
vax vax 1 1 vax 2 2 vax

1 1 2 1 1

ν ν ν ν

β α α α α ω ρ  μ

P S S S

V P S V V S S

dV s S cs S x Ps S x P s S
dt

V I I I I I V

= + + + −

 + + + + − + + 
  (1f) 

 

( ) ( ) ( )

( )
1 2

2 1 2

2
vax 1 1 vax 2 2 vax 1

2 1 2 2 2

1 ν 1 ν 1 ν ω

β α α α α ρ  μ

S S S

V P S V V S S

dV c s S x p s S x p s S V
dt

V I I I I I V

= − + − + − + −

 + + + + − + 
   

   (1g) 

( ) ( )
1 2 1 21 2 1 2β α α α α γ μV

V V P S V V S S V
dI

V V I I I I I I
dt

 = + + + + + − −  

   (1h) 

( )1

1 1 2 11 1 1 1 2 vax 1β α α α α ν μS
S P S V V S S S

dS
PV S I I I I I s x S

dt
 = − + + + + − + 

   (1i) 

( )2

2 1 2 22 2 2 1 2 vax 2β α α α α ν μS
S P S V V S S S

dS
PV S I I I I I s x S

dt
 = − + + + + − + 

   (1j) 

 ( )1

1 1 2 11 1 2β α α α α γ μS
S P S V V S S S

dI
S I I I I I I

dt
 = + + + + − +   (1k) 

 

 ( )2

2 1 2 22 1 2β α α α α γ μS
S P S V V S S S

dI
S I I I I I I

dt
 = + + + + − +   (1l) 
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For all simulations, we take μ = 0.02 y−1 corresponding to 
a yearly crude birth rate of 20 per 1000 people. Additionally, 
we take the infectious period to be 1/γ = 5 days, consistent 
with the modeling in (13, 21, 53) and the estimation of a serial 
interval of 5.1 days for COVID-19 in (54), and assume that c = 
0.5. We take the relative transmissibility of infections to be α 
= αV = α1 = α2 = 1, and therefore only modulate the relative 
susceptibility to disease ϵ. For the initial conditions of all sim-
ulations, we take IP = 1 × 10−9 and assume the remainder of 
the population is in the fully susceptible class. The values of 
the remaining parameters used in the various simulations are 
specified throughout the main text. 
 
Determination of seasonal reproduction numbers 
In order to reflect observed seasonal variation in transmis-
sion rates for respiratory infections arising from related coro-
naviruses (21), influenza (21) and respiratory syncytial virus 
(55), we base seasonal reproduction numbers in this work on 
those in (13), which were calculated in (21) based on the cli-
mate of New York City. Other seasonal patterns can be ex-
plored using the interactive online application. In all 
simulations, we modify these values to force a mean value for 

the basic reproduction number of ( )0 0 2.3R R t= =  by mul-

tiplying the climate-derived time series R0,c(t) by 2.3 and di-
viding by its average value, i.e. 

 ( ) ( )0 0,
0,

2.3
c

c

R t R t
R

=  

 
Modeling of nonpharmaceutical interventions (NPIs) 
In all simulations, we enforce periods of NPI adoption (aris-
ing from behaviors and policies such as lock downs, mask-
wearing, and social distancing) in which the transmission 
rate is reduced from its seasonal value described in the pre-
vious section. In particular, we assume that NPIs are adopted 
between weeks 8 and 47 following the pandemic onset result-
ing in the transmission rate being reduced to 45% of its sea-
sonal value. Between weeks 48 and 79, we assume that the 
transmission rate is to 30% higher than the previous time in-
terval (reflecting an overall reduction to 45(1.3) = 58.5% of the 
original transmission rate), due to either behavioral changes 
following the introduction of the vaccine or the emergence of 
more transmissible strains. Finally, we assume that NPIs are 
completely relaxed beyond week 80. 
 
Linking vaccination rate to inter-dose period 
We consider an exponential relationship between the rate of 
administration of the first vaccination dose ν[ω] and the in-

ter-dose period 
1
ω

. We assume that this rate is maximized at 

ν0 when no second dose occurs (i.e., ω = 0, an infinite inter-

dose period), and that when the first and second doses are 
spaced by the clinically recommended inter-dose period Lopt 

opt
opt

1ω
L

 
=  

 
, the rate of administration of the first dose is 

one half of its maximum value. Thus, [ ] optω
0ν ω 2 νL−= . 
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Fig. 1. Description of the extended immuno-epidemiological model with one- and two-dose 
vaccination regimes [based on (13)]. (A) Model flow chart depicting transitions between immune 
classes (see main text and Materials and methods for a full description of the immune classes and 

parameters). (B) Diagram of the inter-dose period 
1
ω

 
 
 

 considered between the first and second 

vaccine doses and its relationship to the rate of administration of the first vaccine dose ν. The maximum 
achievable rate is ν0 for a fully one-dose strategy, and ν is assumed to decrease exponentially to its 
lowest value ν0/2 when a fully two-dose strategy with inter-dose period corresponding to the clinical 
recommendation (Lopt) is employed. (C) Representative schematic of societal composition of various 
immune classes for the SIR(S) model with no vaccination (left), the extended model with a short inter-
dose period (middle), and the extended model with a long inter-dose period (right). 
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Fig. 2. Synoptic medium-term immune landscapes and infection burden. The immune and 
infection class colors are the same as those defined in Fig. 1A. For each panel, (top) illustrative 
time series of the fraction of the population vaccinated with one or two doses [see note (56)], 
(middle) the fraction of total and severe infections [see (57)], and (bottom) area plots of the 
fraction of the population comprising each immune (SP, R, SS, V1, V2, 

1SS , 
2SS ) or infection (IP, 

IS, IV, 
1SI , 

2SI ) class from just before the introduction of vaccination until 5 years after the 

pandemic onset. In all plots, the maximum rate of administration of the first vaccine dose is 
taken to be ν0 = 2% and the vaccine is introduced at tvax = 48 weeks. We take 

1
0.1V =  and 

2
0.05V =  in keeping with data from clinical trials (3). The fraction of severe cases for primary 

infections, secondary infections, infection after vaccination, and infection after waned two-
dose immunity are taken to be sev, 0.14px = , sev, 0.07sx = , sev, 0.14Vx = , and sev,2 0x = . The 

transmission rates and periods of NPI adoption are defined in the Materials and methods. The 
leftmost column corresponds to a one-dose vaccine strategy (ω = 0), followed by inter-dose 
spacings of 24 weeks, 12 weeks, and 4 weeks (rightmost column). (A) corresponds to an 
overall more pessimistic natural and vaccinal immunity scenario, with ϵ = ϵ2 = 0.7 and 1/δ = 
1/ρ2 = 1 year. For a less effective one-dose vaccine (top section), we take ϵ1 = 0.9, 1/ρ1 = 0.25 
years, and the fraction of severe cases associated with infection after waned one-dose 
immunity is sev,1 0.14x = . For an effective one-dose vaccine (bottom section), we take ϵ1 = 0.7, 

1/ρ1 = 1 year, and the fraction of severe cases associated with infection after waned one-dose 
immunity is sev,1 0x = . (B) corresponds to an overall more optimistic natural and vaccinal 

immunity scenario, with ϵ = ϵ2 = 0.5 and 1/δ = 1/ρ2 = 2 years. For a less effective one-dose 
vaccine (top section), we take ϵ1 = 0.9, 1/ρ1 = 0.5, 1/ρ1 = 0.5 years, and the fraction of severe 
cases associated with infection after waned one-dose immunity is sev,1 0.14x = . For an effective 

one-dose vaccine (bottom section), we take ϵ1 = 0.5, 1/ρ1 = 2 years, and the fraction of severe 
cases associated with infection after waned one-dose immunity is sev,1 0x = . 
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Fig. 3. Heat maps depicting various epidemiological outcomes contingent on dosing regimes. 
(A) Cumulative severe (left) and total (right) case numbers relative to the scenario with no vaccine 
from the time of vaccine introduction through the end of the five-year time period following the 
onset of the pandemic as a function of the one- to two-dose immune response ratio xe and the 
inter-dose period. Parameters correspond to the “weak” immunity scenario of Fig. 2A, but xe sets 
the value of ϵ1, ρ1, and sev,1x . Specifically, we take ϵ1 = ϵ2 + (1 − xe)(1 − ϵ2) such that the susceptibility 

to infection after a waned single dose interpolates linearly between the value after waned two 
doses (ϵ2) when the one and two dose immune responses are equally strong (xe = 1) and unity (full 
susceptibility) when a single dose offers no immune protection (xe = 0). Similarly, we take xsev,1 = 
xsev,2 + (1 – xe)( xsev,V – xsev,2) such that the fraction of severe cases for infections following a waned 
single dose interpolates linearly between the value after waned two doses (xsev,2) when xe = 1 and 
the value after a (failed) vaccination xsev,V when xe = 0. Finally, ρ1 is given by ρ1 = ρ2/xe. (B) Values 
of νmin, the minimal rate of first dose administration per day such that for any ν > νmin the basic 
reproduction [ ]0 ν 1<  and the disease cannot invade (see supplementary materials), as a 

function of the strength of immunity following one (ϵ1) and two (ϵ2) waned vaccines doses, for 
different inter-dose periods. We take the duration of one dose and two dose vaccinal immunity to 
be 1/ρ1 = 0.5 years and 1/ρ2 = 1 year, respectively, and set 

1
0.1V =  and 

2
0.05V = . 
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Fig. 4. Potential viral evolution scenarios under different vaccine regimes.  
(A) Schematic representations of the potential net viral adaptation rate associated with the 
IS, 

1SI , and 
2SI  infection classes under three different scenarios. These are illustrated by 

the filled dots, with the central color denoting the infection class and corresponding to the 
legend in Fig. 1A. The dot outlines correspond to the three scenarios considered (Scenario 
I: black lines and top panel, Scenario II: blue lines and middle panel, and Scenario III: purple 
lines and bottom panel). The phylodynamic model for potential viral adaptation as a 
function of immune pressure is adapted from (17). (B) and (C): Relative net rates of 
adaptation [top rows; colors correspond to the scenarios in (A)], and composition of 
associated infection (IS: solid lines, 

1SI : dashed lines, 
2SI : dashed-dotted lines; middle rows) 

and susceptible (SS: solid lines, 
1SS : dashed lines, 

2SS : dashed-dotted lines; bottom rows) 

classes. The colors in the middle and bottom rows correspond to the legend in Fig. 1A. The 

leftmost column corresponds to a one dose strategy, an inter-dose period of 
1 24
ω
=  weeks 

is assumed in the middle column, and the rightmost column assumes a two dose strategy 

with doses separated by the recommended window of 
1 4
ω
=  weeks. Both (B) and (C) 

correspond to a “weak” natural and vaccinal immunity scenario, with the same parameters 
as those in Fig. 2A. A weaker immune response after one vaccine dose is assumed in (B) 
(with parameters corresponding to those in the top section of Fig. 2A), and a stronger 
immune response after one vaccine dose is assumed in (C) (with parameters 
corresponding to those in the bottom section of Fig. 2A). The weights used to calculate the 
relative net rates of adaptation are , 0.05IS Iw = , 1, 0.3IS Iw = , and 2, 0.05IS Iw =  in Scenario I, 

, 0.05IS IIw = , 1, 1IS IIw = , and 2, 0.05IS IIw =  in Scenario II, and , 0.8IS IIIw = , 1, 1IS IIIw = , and 

2, 0.8IS IIIw =  in Scenario III. 
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