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Abstract

Within an epidemic, mass testing is an essential method to bring healthy individuals back to reg-

ular social activities and to promptly identify asymptomatic infected individuals. However, the

testing capacity, especially for new emerging epidemics, is generally insufficient to meet global

health needs. Testing strategies are needed to quickly identify infected individuals within a com-

munity to control disease spread. Since a (physical) contact network provides information about

potential disease transmission, we propose a group testing strategy based on graph partitioning

to address these challenges. Our testing strategy will automatically partition the contact network

into a certain number of near-balanced subgraphs and determine the testing priority based on

the known testing results and estimated prevalence. A testing order will be assigned to each sub-

graph according to its risk level and the available testing capacity. Besides, an improved infectious

disease transmission model will be introduced to simulate the virus’s dynamic spread.

Strategy Overview

We describe the overall adaptive testing strategy as follows:

Figure 1. The overview of the graph partition based adaptive testing strategy, given as a processing cycle over time

We first partition the social contact network into subgraphs to form testing groups and apply

Dorfman’s group testing strategy without exceeding the upper limit of the test. Then, after round

t, we estimate the current prevalence and determine the number of group tests for round t + 1.
Meanwhile, we raise the testing priority of the neighboring group of known infected individuals.

Next, perform group testing again and keep iterating through each step of the strategy until

estimated prevalence reaches zero.

Contact Network Generation Models

We generated random graphs as the illustration of the social contact network using the following

generation models in a wide range of parameter settings, and used the obtained networks as

inputs for our strategy.

Barabási–Albert (BA) model

Chung-Lu model

Erdős–Rényi (ER) model

Small World Network

Stochastic Block Model (SBM)

Waxman’s Model

Graph Partition

Given an undirected and unweighted social contact network G = (V, E), where individuals are

considered as the vertices V , and the edges E denote the social contact between individuals, we

partition G into m subgraphs G1, G2, ..., Gm. The population size is |V | = N . k is the maximum

number of individuals allowed to pool together for testing using the given testing method. Thus,

we suggested k as the upper size bound of each subgraph and MG as the partition score function

in order to partition it into m almost equal size subgraphs without exceeding size k.

MG(Gi, Gj, k) =

{∑
u∈Gi,v∈Gj

| Eu,v |, | Gi ∪ Gj |≤ k

−1, otherwise
Individuals within each subgraph Gi = (Vi, Ei) share correlated infection probabilities induced by

the social contact network.

Figure 2. The graph partition algorithm that maximise the intra-subgraph edges without exceeding the upper group

testing size bound.

Extended SEIR Model

At any discrete time t between 0 and T , each individual Vi ∈ V can be in one of the following

states: S (Susceptible), E (Exposed), U (Superspreaders), I (Infectious), R (Removed).

New infections only occur during social contact between infected and susceptible individuals if

they have an edge in G. An individual i moves from S to Ewith probability βj if one of i’s neighbors
j ∈I. The infected individual’s infection probability is a random number drawn from an exponential

distribution, shown in Fig. 3B.

After a set incubation period, the Exposed individual becomes infectious, and will move to Infected

state. Each infected individual draws a random recovery period from a normal distribution (mean

µr, std σr). After the recovery period, the infected agent moves to the Remove state. Individuals

that already moved into R will not be reinfected.

Figure 3. A. The extended SEIR model. B. The exponential distribution used for modeling the infectious

heterogeneity. C. Distinct periods of the extended SEIR model.

Group Testing Strategy

For the testing scenario, we consider individuals in each subgraph Gi as a testing group Ci. The

group test X pools the samples from each individuals of a testing group and outputs a testing

result. If any one of the testing group is infected, the testing result is positive and the X = 1.
Otherwise, X = 0. Specifically, Xi,t represents the group test result on testing group Ci at time t.

As we adopt the two-stage testing design from Dorfman’s method, once Xi = 1, a follow-up

second round of testing will be performed to test every individuals in Ci. And we will update Xi
with the number of infected individuals detected in the second round.

Due to limitation of the testing capacity, we set the maximum number of tests per day to B. Let

Qi,t denotes the number of tests performed on testing group Ci at time t, where

Qi,t =

{
1, Xi,t = 0
|Ci| + 1, Xi,t > 1

Thus, at any discrete time t,
∑m

i=0 Qi,t 6 B. To ensure that the total number of tests does not

exceed the testing capacity at any time, we propose an adaptive group testing strategy. Let

pt =
η
∑m

i=0 Xi,t−1∑m
i=0 |Ci|

,

where η is a weight factor. Wewill estimate the current prevalence pt based on the previous day’s

test results.

Next, we adjust the number of group tests zt+1 = µl
kpt

in the following day, where µ is a weight

factor to scale the number of tests. We assume that the test capacity is insufficient to test all

groups at once. Hence, we will assign a testing order to each testing group based on the previous

day’s test results. A higher prioritywill be given to groupswith positive test results from neighbors.

We will only test the top zt+1 group.

Results

We simulate the proposed strategy and baselines using the extended SEIR model on six random

graph generation models. We compare testing strategies in terms of total number of tests, the

maximum outbreak size, the maximum number of secondary transmission, and the number of

uninfected individuals. We also analyze the running time of the methods.

Here we take Barabási–Albert model as an example.

Testing strategy Total number of tests Maximum outbreak size

Individual testing 9020 23.58

Random group testing 1628 13.83

Graph-partition based group testing 1668 21.32

Our group testing strategy 1430 10.10

Table 1. Simulation results on the Barabási–Albert model with N = 500, group size is 10, and testing capacity is 70.

We found that our method significantly reduced the number of tests needed for screening the

entire population. The peak of the outbreak was also lowered and postponed, with no significant

spike throughout the simulation. Furthermore, 68.54% of people were protected from infection

using to our approach, compared to 36% with individual testing strategy. We observed similar

performance on different network generation models. Since the network structure is heteroge-

neous, our method can save about 60-85% of tests comparing to the individual testing method.
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