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Forecasting Multiple Time Series Simultaneously for Covid-19
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Models Used:

ETS - Error, Trend, Seasonality N 7

ARIMA - Autoregressive Integrated Moving Average Takes Multivariate Series and NN, e

SARIMA - Seasonal Autoregressive Integrated Moving Average Captures Their Relationship - N |

VAR - Vector Autoregression over Time - N T e

LSTM - Long Short-Term Memory (Recurrent Neural Network) R
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