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The MinInfEdge Problem
• We are given a social contact network in the

form of a graph G = (V, E) with weights ce ≥ 0
for all e ∈ E, and a vertex s ∈ V . For
notational convenience, let n = |V |.

• An infectious disease starts from s and spreads
through the edges.

• We assume an SIR model of disease spread
which is equivalent to the following percolation
process: Consider a random subgraph
G(p⃗) = (V, E(p⃗)) obtained by retaining each
edge e ∈ E independently with probability pe.
Vertices that are connected to s in G(p⃗) will get
infected. The vector p⃗ is assumed to be known.

• Idea: Mitigate the spread by removing edges.
This corresponds to a social distancing strategy.

• If we remove a cut F ⊆ E from the graph, we
denote by inf (V, E \ F, s) the number of
vertices that are in the same connected
component as s in the residual graph
GF = (V, E \ F ). The expected number of
infected vertices in the percolation process is
then EG(p⃗)[inf (V, E(p⃗) \ F, s)].

• Goal: Choose F ⊆ E such that:
1 c(F ) ≤ B for some given budget B.
2 EG(p⃗)[inf (V, E(p⃗) \ F, s)] is minimized.

Further Comments

• An SIR process like the one above is a common
way of modeling the spread of a disease.

• Rigorous results for this problem are only known
for when pu,v = 1 for all (u, v) ∈ E [1, 4, 3, 6], i.e.,
the case of highly contagious diseases

(α, β)-approximation

We say that F ⊆ E is an (α, β)-approximation if
c(F ) ≤ αB, and EG(p⃗)[inf (V, E(p⃗) \ F, s)] ≤ β ·
EG(p⃗)[inf (V, E(p⃗)\F ∗, s)], where F ∗ is an optimal
solution for the given instance.

A Warm-Up Result for a Special
Case of MinInfEdge

• Here we assume that all edge costs ce are equal
to 1 and that the transmission probabilities are
uniform, i.e., pe = p for all e ∈ E and some
p ∈ [0, 1].

• Furthermore, let cmin be the size of the
minimum cut in G and assume that
p · cmin = Ω(log n).

• Using the previous assumptions and a cut
sparsification result from [5], we give an
(O(1), O(1))-approximation for MinInfEdge.

A Path-Counting SAA Approach
• Here we use the Sample Average Approximation

(SAA) technique, where we sample a
polynomial number of graphs from G(p⃗).

• We proceed by an LP-based approach, where we
formulate an “empirical” LP on the set of
sampled graphs.

• Finally, we develop a randomized rounding
scheme for the fractional solution of the above
LP, which returns a solution F0 ⊆ E.

• Let Γ the expected number of simple paths in a
graph drawn from G(p⃗).

• Main Result: For any chosen constants ϵ > 0
and γ > 1, the following hold:
1 With probability at least 1 − O(n−γ), we have

c(F0) ≤ O(γ
ϵ) log n · B

2 When Γ ≤ poly(n), we have
E[inf (V, E(p⃗) \ F0, s)] ≤ (1 + O(ϵ) + O(1/n))OPT

• The randomness in the above statement can be
of three distinct types:
1 Type 1: This randomness is over the random choice, if

any, of our network G = (V, E) (randomness resulting
from a random-graph model for G). If the network G is
deterministic, Type 1 is vacuous: there is no such
randomness.

2 Type 2: This randomness arises from the choices of
our randomized rounding algorithm.

3 Type 3: This type of randomness refers to the random
percolation/diffusion of the disease, governed by p⃗.

The Chung-Lu [2] Random-Graph
Model

• In this model, we have a set of vertices V , and a
weight wv for every node v ∈ V that denotes its
expected degree in the graph. The edges E of
the graph are determined via the following
random process. For every u, v ∈ V , the
probability of having the (u, v) edge in E is

qu,v = wuwv∑
r∈V wr

,

where these edges are present independently
and self-loops are allowed. A common
instantiation of this model is with a power law,
in which ni, the number of nodes of weight i,
satisfies ni = Θ(n/iβ), with β > 2 being a
model parameter.

• The random graphs captured by the Chung-Lu
model are more realistic in terms of a social
contact network.

• We refer to MinInfEdge when the graph
G = (V, E) is from the Chung-Lu model as
MinInf-CL.

• The random process for constructing the graph
G = (V, E) in this model should not be
confused with the percolation process occurring
on G during the spread of the disease. The
whole situation can be viewed as happening in
two steps. At first, G is chosen randomly
according to the Chung-Lu model. Afterwards,
the disease starts its diffusion in the chosen
network according to the probability vector p⃗.

Counting Paths in the Chung-Lu
Model

• We show that when β > 3 we have
Γ = poly(n). This result combined with our
SAA approach gives a bicriteria algorithm for
MinInf-CL that works with high probability.

• We show that when β < 3, Γ is no longer
polynomial in n.

A Different Deterministic
Rounding SAA Approach

• Instead of the randomized rounding mentioned
earlier, we apply a simple deterministic
rounding scheme. The advantage of the latter is
that the success probability of the algorithm no
longer relies on the value Γ. However, this
comes at the expense of much worse bicriteria
factors.

• Main result: With high probability, we
compute a solution that is an
(O(n2/3), O(n2/3))-approximation for
MinInfEdge.
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